Why Build Stellar Interferometers?

H.A. McAlister CHARA, Georgia State University

Because they are there!?

Technical Challenge
&
Scientific Opportunity

"Simple" Long-Baseline Interferometer

The Real Thing

Could Throughput be an Issue Here?

This is a Tough Business

Pease's 50-ft Interferometer on Mt. Wilson, c. 1935

50-ft Interferometer site in early 1980's

Currently Operating Instruments

Name	Institution	Site		Element Aperture (cm)	Max. Baseline (m)	Operating Wavelength (microns)	Operating Status
GI2T	CERGA	Calern	2	150	35	0.4 - 0.8 &>1.2	since 1985
COAST	Cambridge U	Cambridge	4	40	100	0.4 - 0.95 & 2.2	since 1991
SUSI	Sydney U	Narrabri	13	14	640	0.4 - 0.66	since 1991
IOTA	CfA	Mt. Hopkins	3	45	38	0.5 - 2.2	since 1993
ISI	Berkeley U	Mt. Wilson	3	165	30(+)	10	since 1990
NPOI	USNO/NRL	Anderson Mesa	6	60	435	0.45 - 0.85	since 1995
PII	JPL/Caltech	Mt. Palomar	2	40	110	1.5 - 2.4	since 1995
CHARA	Georgia St. U	Mt. Wilson	6	100	350	0.45 - 2.4	since 1999
Keck	CARA	Mauna Kea	2(4)	1,000(150)	165	2.2 - 10	fringes 03/01
VLTI	ESO	Cerro Paranal	4(3)	840(250)	200	0.45-12	fringes 03/01

Challenges

• Interferometers are Complex & Hierarchical Systems

Numerous sophisticated subsystems:

Siderostats/Telescopes

Delay Lines

Fringe Trackers

Beam Combiners

Alignment

Metrology (Astrometry requires exceptional performance)

All working together!

Attention to calibration is crucial

Lots of Cool Hardware!

Challenges (Cont.)

New Tools & Algorithms Required

Scheduling & Archiving
Imaging – How do we combine many beams
simultaneously?

Science

What is optimal? Realistic?
Avoid over-heightening expectations
Get theorists involved
Develop collaborations

Funding

Still regarded as a developmental area providing niche science (Lots of stars, not much galaxy stuff!)
Patience & perseverance
Develop Partnerships

Opportunities

Wonderful Resolution

1,000 mas - classical imaging 20 mas - adaptive optics 10 mas - HST 0.1 mas - SUSI 2 orders gain over AO & HST (but very narrow FOV!)

Access to New Science
 Resolution and Accuracy

Opportunities (Cont.)

Current Projects are Stepping Stones to an OVLA

- Prerequisites
 Significant science must be forthcoming (Soon!)
 Imaging must be demonstrated for complex objects
 Partnerships must be established
- May be built in the 2010 decade??

 If so, those in this room will be building it

More black-belt interferometrists needed

• Learn from the radio experience $T_{VLA} - T_{GBI} = Only \sim 20 \text{ years!}$ But, is O/IR interferometry really analogous?

Interferometry Science Most Favorable Areas

Single Stars

Effective Temperatures & Fluxes
Young Stars' Structure & Morphology
Stellar Surface Features
Novae/Supernovae

Binary & Multiple Stars

Resolved Spectroscopic Binaries

Stellar Masses and Luminosities

Distance Calibrations

Radii of Components

Detection of Low-Mass Companions

Astrometry
 Ground (NPOI) & Space (SIM)

Nice Example of a Revolution

Resolved Spectroscopic Binaries

Double-Lined Binaries

Spectroscopy gives mass ratio & asini
Interferometry gives a and i
Together yield masses & distances
 ("orbital parallax")
~200 DSB's have a" > 1 mas

- <u>Single-Lined Binaries</u>
 Accurate parallaxes give individual masses
- 70% of SB's are Resolvable
 Many radii also measurable

Interferometry Science Other Areas

Single Stars

Limb Darkening
Linear Diameters
Star Formation Phenomena & Dynamics
Pre-Main Sequence Objects
Absolute Rotation
Flare Star Phenomena
Cepheid P-L Calibration
Mira Pulsations
Non-radial Oscillations
Hot Star Phenomena (shells, winds, etc.)
Cool Star Shells

Binary & Multiple Stars

Duplicity Surveys Close Binary Phenomena

Star Clusters

Proper Motions Duplicity Surveys

Extragalactic

Binaries in Magellanic Clouds AGN Structure

Solar System

Planetary Satellites
Minor Planets & Comets
Solar Surface

Extrasolar Planets

Astrometric Detection
Inspection/Verification
Imaging exo-zodiacal dust
Imaging protoplanetary disks

Interferometry Science Other Areas (Cont.)

You'll Think of Something

(Get the theorists involved!)

"History has taught us that whenever a new technique enters a new realm of observational phase space, the most striking and productive results tend to be those not anticipated by even the most prescient thinkers"

- Daniel Popper, 1990

Interferometry Science In Perspective

- Presently Sensitivity & (U,V) Limited
 Low Throughput is Inevitable
 Adaptive Optics May Help
 Limited Imaging Capability
- Outstanding Stellar Science
- <u>Limited Extragalactic Science</u>
 Limited by Sensitivity & Resolution